Daniel Ari Friedman 30b11dfb3a Updates
2025-02-07 12:22:16 -08:00

337 строки
8.1 KiB
Markdown

---
type: matrix_spec
id: B_matrix_001
matrix_type: transition
created: 2024-03-15
modified: 2024-03-15
complexity: advanced
tags:
- matrix
- transition
- active-inference
- dynamics
- probability
- control
related_spaces:
- [[s_space]]
- [[pi_space]]
- [[belief_space]]
semantic_relations:
- type: implements
links:
- [[markov_property]]
- [[transition_model]]
- type: influences
links:
- [[policy_selection]]
- [[state_prediction]]
- type: relates_to
links:
- [[dynamics_model]]
- [[control_theory]]
---
## Overview
The B-matrix is a fundamental component in POMDPs and active inference frameworks, representing state transition probabilities under different actions. It encodes the dynamics of the environment and how actions influence state changes, forming the basis for prediction, planning, and control.
## Core Concepts
### Fundamental Definition
- [[transition_probability]] - Basic concept
- Conditional probability P(s'|s,π)
- State transitions
- Action influence
- Temporal dynamics
### Key Properties
- [[markov_property]] - Memory independence
- History independence
- Current state sufficiency
- Future prediction
### Structural Characteristics
- [[matrix_structure]] - Organization
- Dimensionality
- Sparsity patterns
- Symmetry properties
- Conservation laws
## Mathematical Framework
### Formal Definition
```math
B_{ijk} = P(s'_i|s_j,π_k)
# Constraints
∑_i B_{ijk} = 1 ∀j,k
B_{ijk} ≥ 0 ∀i,j,k
```
### Matrix Structure
```yaml
dimensions:
rows: num_states # Next state (s')
cols: num_states # Current state (s)
depth: num_actions # Actions/policies (π)
constraints:
probability:
- sum(axis=0) == 1.0 # Column-wise normalization
- all_values >= 0 # Non-negative probabilities
structure:
- rows == cols # Square matrix per action
- depth == num_policies
```
### Probabilistic Properties
- [[transition_properties]] - Characteristics
- Stochasticity
- Ergodicity
- Reversibility
- Detailed balance
## Implementation Details
### Data Structures
#### Basic Structure
```python
class BMatrix:
def __init__(self, num_states: int, num_actions: int):
self.B = np.zeros((num_states, num_states, num_actions))
self.initialize_transitions()
def initialize_transitions(self):
"""Initialize with identity or prior knowledge"""
for a in range(self.num_actions):
self.B[:,:,a] = np.eye(self.num_states) # Start with self-transitions
```
#### Advanced Features
```python
def get_transition_distribution(self, state: int, action: int) -> Distribution:
"""Get probability distribution over next states"""
return Distribution(self.B[:, state, action])
def sample_next_state(self, state: int, action: int) -> int:
"""Sample next state from transition distribution"""
return np.random.choice(
self.num_states,
p=self.B[:, state, action]
)
```
### Storage Formats
- [[matrix_storage]] - Data management
- Dense arrays
- Sparse representations
- Compressed formats
- Memory mapping
### Computational Methods
- [[transition_computation]] - Processing
- Matrix operations
- Parallel computation
- GPU acceleration
- Distributed processing
## Learning and Adaptation
### Learning Methods
#### Maximum Likelihood
```python
def update_transitions_ml(self,
state: int,
action: int,
next_state: int,
learning_rate: float):
"""Update transitions using maximum likelihood"""
target = np.zeros(self.num_states)
target[next_state] = 1
self.B[:, state, action] = (1 - learning_rate) * self.B[:, state, action] + \
learning_rate * target
```
#### Bayesian Updates
```python
def update_transitions_bayes(self,
state: int,
action: int,
next_state: int,
prior_strength: float):
"""Update transitions using Bayesian inference"""
self.counts[next_state, state, action] += 1
alpha = self.counts[:, state, action]
self.B[:, state, action] = dirichlet.mean(alpha + prior_strength)
```
### Structure Learning
- [[causal_discovery]] - Structure identification
- Sparsity patterns
- Invariant relationships
- Causal mechanisms
- Independence testing
### Online Adaptation
- [[dynamic_learning]] - Real-time updates
- Incremental learning
- Adaptive rates
- Forgetting factors
- Confidence tracking
## Applications
### Planning and Control
#### Policy Evaluation
```python
def evaluate_policy(self, policy: np.ndarray, horizon: int) -> np.ndarray:
"""Evaluate state occupancy under policy"""
state_dist = initial_distribution
for t in range(horizon):
action = policy[t]
state_dist = self.B[:,:,action] @ state_dist
return state_dist
```
#### Optimal Control
- [[optimal_control]] - Control methods
- LQR formulation
- Model predictive control
- Stochastic optimal control
- Risk-sensitive control
### Prediction and Simulation
#### Forward Simulation
```python
def simulate_trajectory(self,
initial_state: int,
policy: List[int],
num_samples: int) -> np.ndarray:
"""Simulate multiple trajectories under policy"""
trajectories = np.zeros((num_samples, len(policy) + 1))
trajectories[:,0] = initial_state
for t, action in enumerate(policy):
for n in range(num_samples):
current_state = int(trajectories[n,t])
trajectories[n,t+1] = self.sample_next_state(current_state, action)
return trajectories
```
#### State Prediction
- [[state_prediction]] - Future states
- Expected states
- Uncertainty propagation
- Confidence bounds
- Risk assessment
## Integration with Other Components
### With State Space
- [[state_space_integration]] - State representation
- State encoding
- Dimensionality
- Constraints
- Invariants
### With Action Space
- [[action_space_integration]] - Action effects
- Action encoding
- Feasibility
- Constraints
- Cost models
### With Observation Model
- [[observation_integration]] - Perception
- Hidden states
- Sensor models
- Uncertainty
- Filtering
## Advanced Topics
### Information Theory
- [[transition_information]] - Information measures
- Entropy rate
- Channel capacity
- Information flow
- Predictive information
### Geometric Properties
- [[transition_geometry]] - Geometric aspects
- Manifold structure
- Geodesics
- Parallel transport
- Curvature
### Stability Analysis
- [[transition_stability]] - Stability properties
- Fixed points
- Attractors
- Lyapunov stability
- Structural stability
## Optimization and Efficiency
### Computational Optimization
- [[computation_optimization]] - Performance
- Matrix operations
- Memory usage
- Cache efficiency
- Parallelization
### Numerical Stability
- [[numerical_methods]] - Numerical issues
- Conditioning
- Error propagation
- Precision control
- Stability preservation
### Resource Management
- [[resource_optimization]] - Resources
- Memory allocation
- Computation scheduling
- Load balancing
- Power efficiency
## Best Practices
### Implementation Guidelines
- [[implementation_guide]] - Development
- Code structure
- Error handling
- Testing strategies
- Documentation
### Validation Methods
- [[validation_methods]] - Quality assurance
- Unit testing
- Integration testing
- Performance testing
- Validation metrics
### Maintenance Procedures
- [[maintenance_procedures]] - Upkeep
- Updates
- Monitoring
- Debugging
- Optimization
## References
- [[markov_decision_process]]
- [[transition_learning]]
- [[control_theory]]
- [[information_theory]]
- [[optimization_methods]]
## See Also
- [[a_matrix]] - Action model
- [[d_matrix]] - Prior preferences
- [[state_space]] - State representation
- [[policy_space]] - Action policies
- [[active_inference]] - Framework
- [[control_theory]] - Control principles